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1 Classical Electromagnetism and Electromag-
netic Waves

We begin this document with the classical picture of the electromagnetic (EM)
field. We will show that the EM field satisfies a wave equation. We then go on
to show that the EM field may be thought of a collection of harmonic oscillators
at every point in space by examining the Hamiltonian of the field in Fourier
space.

1.1 The Field and Wave Equations

In 1864, James Clerk Maxwell proposed that solutions of the wave-equations of
classical EM could be identified with light waves. Mathematically, the vacuum
form of the EM field equations are

∇ ·E = 0

∇×B =
∂E
∂t

∇ ·B = 0

∇×E = −∂B
∂t

where we have used non-rationalized units to free the equations of constants.
It is well known that the application of vector calculus to the field equations
results in the two well known wave equations of classical EM.

�E = 0

�B = 0

where � is the D’Alembertian defined as

� = − ∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

The physical interpretation of these wave equations is well known - disturbances
in the EM field propagate through space in the form of waves of speed c = 1
(recall that in rationalized units, velocities are unit-less and the speed of light
is unity).
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1.2 The Hamiltonian of the EM Field

The scalar and vector potentials of EM are defined by

E = −∇φ− ∂A
∂t

B = ∇×A

We pick the transverse gauge
∇ ·A = 0

and in terms of the potentials, the wave equation becomes

�A = 0

NB: In the transverse gauge, φ is completely determined byρ, the charge density,
and has no differential equation in t - it is not a dynamically independent field.
The independent modes of A are

A =
1

(2π)
3
2

∫
Qeık·rd3k

With k = ωn̂, the gauge condition and wave equation for A become

n̂ ·Q = 0

∂2Q
∂t2

+ ω2Q = 0

for every value of k. Now this has solutions, for A,

A(r, t) =
1

(2π)
3
2

2∑
α=1

∫
[ε̂α(k)cα(k, t)eık·r + ε̂?α(k)c?α(k, t)e−ık·r]d3k

where we’ve defined orthonormal and transverse unit vectors ε̂α(k) such that

ε̂?α(k) · ε̂β(k) = δαβ

and
ε̂α(k) · n̂ = 0

with cα(k, t) defined so that

c(k, t) =
2∑

α=1

ε̂α(k, t)cα(k, t)

Precisely why we’ve done all of this will become clear in the next section, but,
continuing on, we now use this formalism to express the classical Hamiltonian
of the electromagnetic field

H =
1

8π

∫
(E2 + B2)d3r
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as

H =
2∑

α=1

∫
Hα(k)d3k

with

Hα(k) =
ω2

2π
c?α(k, t)cα(k, t) =

ω2

2π
| cα(k) |2

If we now define canonical coordinates

xα(k, t) =

√
1

4π
(cα(k, t) + c?α(k, t))

and

pα(k, t) = −ı
√
ω2

4π
(cα(k, t)− c?α(k, t))

we can rewrite our Hamiltonian as

H =
2∑

α=1

∫
Hα(k)d3k

with
Hα(k) =

1
2

[pα(k, t)2 + ω2xα(k, t)2]

with Hamilton’s Equations of Motions

dxα(k, t)
dt

= pα(k, t)

and
dpα(k, t)

dt
= −ω2xα(k, t)

Hence the EM field may be represented by a collection of oscillators at every
location in space, with a simple harmonic oscillator for every mode of oscillation.
This is an extremely important result for it allows us to guess how things change
when we quantize the field.

2 Quantized EM and Photons

Before we begin the arduous task of quantizing the field, it is natural to ask
why it is desirable to do so. The answer is twofold - quantizing the field allows
us to correctly calculate EM interactions between particles and it also offers
the possibility of answering questions about the accelerating expansion of the
universe!
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2.1 Canonical Quantization

We begin by transforming the canonical coordinates used in the Hamiltonian of
the previous section into operators. They must then satisfy the usual commu-
tation relations

[xα(k, t), xα′(k′, t)] = [pα(k, t), pα′(k′, t)] = 0

and
[xα(k, t), pα′(k′, t)] = ıδαα′δ3(k′ − k)

We then define the raising and lowering operators by

aα =

√
1

2ω
[ωxα + ıpα]

and

a†α =

√
1

2ω
[ωxα − ıpα]

The raising and lowering operators satisfy the usual commutation relations

[aα(k, t), aα′(k′, t)] = [a†α(k, t), a†α′(k′, t)] = 0

and
[aα(k, t), a†α′(k′, t)] = ıδαα′δ3(k′ − k)

The Hamiltonian then becomes

H =
∫ 2∑

α=1

Hα(k)

with
Hα(k) =

1
2
ω[aalpha(k, t)a†alpha(k, t) + a†alpha(k, t)aalpha(k, t)]

If we define the number operator by

Nα(k) = a†α(k)aα(k)

then we may rewrite the Hamiltonian for each mode as

Hα(k) = ω

(
Nα(k) +

1
2
δ3(0)

)
If we label the eigenstates of this Hamiltonian by nα(k) then each state has
energy

E =
2∑

α=1

∫
ω

(
nα(k) +

1
2
δ3(0)

)
d3k
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2.2 Photons

We may identify the state nα(k) with the occupation number of the mode (α,k).
An increment of nα(k) by 1 increases the energy by ω, so the eigenstates are
nα(k) photons with momentum k. The creation and annihilation operators now
add or remove photons from our quantized field. What about the ground-state
energy? We have nα(k) photons each with a minimum non-zero energy. The
total energy thus becomes

E =
2∑

α=1

∫
ω

2
δ3(0)d3k

This is troublesome! We seem to have a non-zero energy in the vacuum (no
photons) state. It turns out that this is merely the first of many infinities that
crop up in quantum field theory. The normalization of the relativistic wave
function is another example of a troublesome infinity. Fortunately, this non-
zero vacuum energy is easier to dispose of. The usual method is to reduce the
energy of each mode so that the ground state has zero energy. The energy of
our field in vacuum with no photons now sums to zero. Another argument is
to identify the vacuum energy with the cosmological constant that appears in
Einstein’s Field Equation for Gravity (G). We will postpone a discussion of the
cosmological constant to the section on General Relativity. Before ending, we
shall point out (without proof), that photons are spin-1 bosons because they
arise from the quantization of a vector field i.e. a (1, 0)-tensor field. In general,
the quantization of a (n, 0)-tensor field results in the quanta of the field having
spin-n.

3 Classical Gravitation and Gravitational Waves

We will now examine the celebrated Gravitational (G) field equations due to
Einstein in 1916. Before we may do so, we shall present a quick review of
the mathematical language of general relativity. It is assumed that the reader is
familiar with the Einstein summation convention and with basic tensor calculus.

3.1 The Mathematics of Curvature

Given an n-dimensional manifold, M, one defines the infinitesimal distance
element to be

ds(2) = gµνdx
µdxν

where gµν is the metric. Partial derivatives are replaced by covariant derivatives
defined by

∇µ = ∂µ + Γνµλ
where Γνµλ are the Christoffel symbols. They are related to the metric by

Γλµν =
1
2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν)
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In a sense, the Christoffel symbol corrects the partial derivative for the pres-
ence of curvature to give the correct covariant derivative. Straight lines on the
manifold are geodesics and satisfy the geodesic equation.

vµ∇µvν = 0

The curvature of the manifold is quantified by the Riemann curvature tensor
given by

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

The Riemann curvature tensor measures the change in a vector when parallel
transported along two geodesics. The symmetries of the tensor results in the
number of independent components being given by

N =
n2(n2 − 1)

12

which, in the 4-dimensional spacetime that we live in, gives 20 independent
components. The Riemann tensor may be contracted to obtain the Ricci tensor

Rµν = Rλµλν

The Ricci tensor measures distortions of the volume element due to the curvature
of the manifold. The Ricci tensor is symmetric, implying that it has 10 free
components in 4-dimensional spacetime. A further contraction of the Ricci
tensor yields the scalar curvature

R = Rµµ

Finally, from the Ricci tensor and the scalar curvature, one may construct the
Einstein tensor

Gµν = Rµν −
1
2
Rgµν

Since the Einstein tensor is constructed from the Ricci tensor, it too measures
the distortions of volumes on the manifold and has 10 free components in 4-
dimensional spacetime. With this, we end our survey of the mathematics of
curvature and delve into the G field equations.

3.2 The Field and Wave Equations

The General Theory of Relativity put forward by Albert Einstein in 1916 is
a three part replacement for Newtonian mechanics and Gravity. First, the
Galilean transforms are replaced by Lorentz transforms

xµ
′

= Λµ
′

ν x
ν

where the Λµ
′

ν are the Lorentz matrices belonging to the Poincaré group of
boosts, rotations and translations. Next, Newton’s First Law is generalized
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to state that objects travel along geodesics when no force is acting on them.
Geodesics are given by

vµ∇µvν = 0

Lastly, Newton’s Law of Universal Gravitation is replaced by the Einstein Field
Equation

Gµν = 8πTµν −Υgµν

where Υ is the Cosmological Constant and Tµν is the energy-momentum tensor.
The modus operandi is thus to use the action principle to derive an energy-
momentum tensor for the physical situation being modeled and to use it to
calculate the Einstein tensor. From the Einstein tensor, one may obtain the
Christoffel connections and hence the metric. At this point, the metric can
be used along with the geodesic equation to calculate the trajectories of free
particles. Thus, in the general theory, gravity is not an independent field defined
on spacetime as much as it is the curvature of spacetime itself. This will prove
to be the primary stumbling block in the quantization of gravity. Going back
to the Cosmological Constant Υ, it is interesting to recall that Einstein first
introduced the constant to allow for steady state solutions of the Universe (i.e.
neither expanding nor contracting) for at the time it was not known that the
Universe was expanding (Hubble’s seminal result demonstrating the expansion
of the Universe came much later in 1929). Einstein removed the constant from
his equations upon hearing of Hubble’s result, calling the introduction of the
constant his ’greatest blunder’. However, recent results from the Wilkinson
Microwave Anisotropy Probe (WMAP) and Sloan Digital Sky Survey (SDSS)
suggest that the expansion rate of the Universe is actually increasing leading
to the reintroduction of the Cosmological Constant in the field equations. It is
suggested that part of the contribution to the measured value of Υ comes from
the non-zero vacuum energy of the quantized EM field, coupling the EM field
to the shape of the Universe. Returning to the field equations, in the absence of
a source for the G field, and ignoring the contribution of Υ for the time being,
one finds that the vacuum G field equation is

Gµν = 0

Recall that Gµν has ten free components. Since we may pick our coordinate
axii arbitrarily, we can further reduce (the details are messy) the number of
independent components to a mere 6 second order hyperbolic-elliptical PDEs.
Several specific solutions for various energy-momentum tensors are known, but
no general solution exists. To search for wavelike solutions, it is common practice
to look at the weak field, low velocity limit of the field equations. The first step
involves breaking the general spacetime metric into a ’flat’ Minkowski metric
along with a small perturbation.

gµν = ηµν + hµν

where
| hµν |≤ 1
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The traceless strain tensor is then defined to be

sij = hij −
1
3
δklhklδij

Note that the indices i and j appearing in the strain equation run over only
spatial components i.e. i, j ∈ {1, 2, 3}. The strain tensor therefore measures the
spatial distortions of the perturbations of the metric. The time-like part of the
perturbation metric (i.e. the 00-component) is a scalar. The weak-field versions
of the field equations are

G00 = 8πT00

G0j = 8πT0j

Gij = 8πTij

Notice how this version of the field equations decouple the time and space com-
ponents of the field equation. Applying this version of the field equations to the
strain tensor, one can show that the strain tensor satisfies the wave equation

�sij = 0

This is the wave equation for G radiation. The G field equations therefore predict
the existence of G waves, just as the EM field equations predict the existence of
EM waves.

3.3 G Waves

Without going into mathematical details (for the math gets tedious), we may
appreciate some salient features of G waves. First, one may ask, what the effect
of G wave on a massive substance would be. That G waves should interact with
massive substances may be inferred from the fact that G waves are distortions of
the metric which is in turn also distorted by the massive object that the G wave
interacts with. This is analogous to the interactions of an EM wave with charged
objects such as an electron. The effects of a G wave may best be visualized by
looking at the case of a G wave passing perpendicularly through the plane of a
massive ring. The effect of the G wave is to alternately stretch and squeeze the
ring of mass along two perpendicular axii. It turns out that just as we have two
linearly independent polarizations of EM waves at an angle of π

2 to each other,
we also have two linearly independent polarizations of G waves. However, these
occur at an angle of π

4 to each other. This is because the underlying field that
describes these waves is a tensor field and hence the polarization exhibited by
G waves is a sort of ’tensor polarization’ that points in two directions. The two
linearly independent polarizations are referred to as the + polarization and the
× polarization. Elliptically polarized G waves that are time dependent linear
combinations of these two polarizations are therefore also possible. G waves are
described by their amplitude, frequency (ν), and wavelength (λ). The amplitude
of a G wave is a measure of the fractional stretching (or squeezing) that it
produces in a body. The wavelength and frequency of a G wave are defined in
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the usual way and satisfy λν = 1 since they travel at the speed of light. Like
EM waves, G waves carry energy away from the source of the wave and deposit
part of this energy when they interact with a massive body.

3.4 Experiments

Experimental confirmation of G waves was first provided by Russell Hulse and
John Taylor for which they were awarded the 1993 Nobel Prize in Physics. They
examined the rotation rate of the system PSR B1913 + 16 which consists of a
gravitationally bound star and pulsar (rotating neutron star with huge amounts
of angular momentum). Due to the very high density of neutron stars and tiny
radius of orbit, the G field of the system is very strong and as a result the
system is a strong emitter of G radiation. This carries energy away from the
system causing the radius of the orbit to decrease, reducing the time period of
the system within measurable time scales. Although this proves the existence
of G waves, G waves have not as yet been detected directly. The reason lies in
the fact that G waves carry very small amounts of energy and have minuscule
due to the weakness of gravity itself. For example, calculations indicate that the
Earth emits a minuscule 300W of gravitational radiation as it travels around
the Sun. The most massive binaries - black hole binaries are expected to radi-
ate considerably larger amounts of G radiation and it is expected that events
involving the merger of two black holes should emit G radiation with a large
enough amplitude to be detected by the latest generation of G wave detectors
such as LIGO. Traditional detectors take the form of a Weber bar surrounded
by piezoelectric crystals. A passing G waves would distort the bar more than
it would distort the piezoelectric crystals causing measurable voltages to be set
up across the crystals. Such experiments have proven unsuccessful so far and
the latest generation of G wave detectors are based on the principle of inter-
ferometry (though one Weber sphere type experiment, MiniGrail, is in progress
in the Netherlands). In interferometric detectors such as LIGO, light is sent
down two long, perpendicular tunnels multiple times before being allowed to
interfere. G waves passing perpendicular to the plane of the arms would alter-
nately squeeze and stretch the arms as well as the light beam itself. However,
since the stretching and squeezing is proportional to the length of the body,
the arms would change length by a much greater factor than the change in the
wavelength of the light beam causing an interference pattern to appear. Several
such experiments are either already operational or in the process of reaching
operational status. The presence of multiple detectors suggests that it may be-
come possible to triangulate G wave sources allowing for correlations between
G wave, neutrino and EM wave measurements. Eventually, it is hoped that the
placement of interferometric detectors in Solar orbit, such as the LISA proposal,
will allow for G wave astronomy. The future looks bright in G radiation!
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4 Quantized Gravitation and Gravitons

We conclude this paper with a brief overview of quantum gravity and gravitons.
So far, all attempts at a quantum theory of gravity have been failures. Einstein
himself was the first to suggest that his field equations required quantum correc-
tions in 1916 at the birth of the general theory. in 1927 Oskar Klein suggested
that a quantum theory of gravity had to modify the nature of spacetime itself.
The first technical papers on QG appeared in the works of Léon Rosenfeld in
the early thirties. The graviton as the quantum of G radiation first appeared
in a 1934 paper by Dmitrii Ivanovich Blokhintsev and FM Gal’perin which also
showed that just as the photon is a spin one particle because the underlying
field is a vector field, the graviton should be a massless a spin two particle be-
cause the underlying field is the metric tensor. Research into a quantum theory
of gravity has been the focus of many famous theoreticians since and today
the foremost candidates for a quantum theory of gravity are string theory and
variants such as brane and M-theory and loop quantum gravity.
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